
AD-A266 176

WL-TR-93- 8019

INTEGRATION TOOLKIT AND METHODS (ITKM)
MANUFACTURING METHODS & PROTOTYPE TOOLKIT

A Combined Modeling Method Using IDEFO, IDEFix and XSpec

SElECTE
JUN 24 1993

Industrial Technology InstituteP.O. Box 1485
Ann Arbor, MI 48106

July 1992

Final Report for Period June 1991 June 1992

Approved for public release; Distribution is unlimited.

"vw- r93-14186

Manufacturing Technology Directorate IIIIII III l 111Iii}
Wright Laboratory
Air Force Systems Command
Wright-P&, tterson Air Force Base, Ohio 4-J433-7730 ^,. -- A goo% Mw

NOTICE

When Government drawings, specifications, or other data are used for any purpose othcr
than in connection with a definitely rclated Government procurement operation, the Ulnilcd
States Government thereby incurs no responsibility nor any obligation whatsoever; and the
fact that the government may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

BRIAN STUCKE DATE
Project Manager

BRUCE A. RASMUSSEN, Chief DATE
Integration Technology Division
Manufacturing Technology Directorate

"If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify WLUMTIA, W-PAFB,
OH 45433-6533 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE FOMA"P OPOVE
OUB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, incduding e time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed. and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sugges-
tions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeffers.
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1992 Final Report
I I June 1991 - June 1992

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Integration Toolkit and Methods MTKM) PE: 7801 F
Manufaduring Methods & Prototype Toolkit; C: F33615-91-C-5725
A Combined Modeling Method Using IDEFO, IDEFlx and XSpec

6. AUTHOR(S) PR: 3095

TA: 06

WU: 64
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Industrial Technology Institute
P.O. Box i485
Ann Arbor, MI 48106 ITI-CR-92-57a

"9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Brian Stucke (513-255-7371) AGENCY REP NUMBER

Manufacturing Technology Directorate (WL/MTIA), Bldg. 653 WL-TR-93- 8019
Wright Laboratory, 2977 P St., Suite 6

.-Air Force Systems Command. WPAPR01 4S4 13--7739

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONAVAILABILTY STATEMENT 12b. DISTRIBUT;ON CODE

Approved for Public Release' Distribution is unlimited.

13. ABSTRACT

This report develops the major theoretical concepts for the integration of three diverse engineering modeling languages: IDEFO, IDEFIx, and
XSpec. IDEFO is a high level modeling tool based on functional decompositions, IDEFIx is a detailed data modeling tool and XSpec is a simulation
tool based on object-oriented decompositions.

The approach used to integrate the tools is to develop a meta-model of the three modeling languages. These meta-models are examined, and a
singel combined meta-model is develped. All three systems use the same combined meta-model. This ensures that any changes to the system made
in one language is reflected in the other languages automatically.

The report is divided into the following sections. A short description of each of the languages is given. These are not intended to be exhaustive,
they are provided so that the reader is familiar with the terminology used in each of the methods and to get a feel of the types of models each
language produces. The meta-models of IDER) and XSpec are givpn, The approach used to develop the combined meta-model is given. Finally, a
complete description of the meta-model is presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES

IDEF, IDEFO, IDEFIx, XSpec, Activity Based Modeling, Engineering Modeling Language, Object Oriented, 52

Meta-Model. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASS 19. SECURITY CLASS 20. UMITATION ABSTRACT
OF REPORT OF THIS PAGE. OF ABSTRACT

Unclassified Unclassified Unclasified I SAR

Standard Form 298 (Rev 2-69)
Prescribed by ANSI Std Z239-18
298-102

Table of Contents

1. Introduction .. I

2. IDEFO I
2.1 Activity Based M odelingI
2.2 Decom position .. 3
2.3 IDEFO M ethod .. 5

3. ID EF Ix 6
3.1 E ntities 6
3.2 A ttributes .. 8
3.3 K eys ... 8
3.4 Relations .. 8
3.5 M ethod ... 11

4. X Spec .. 12
4.1 Elem ents .. 12

4.2 Com ponents ... 13
4.3 Messages, Pins, Connectors and Cables 14

4.3.1 Pins ... 15
4.3.2 Connectors .. 15
4.3.3 Cables ... 15

4.4 M ethod ... 16

5. Meta-Models of the Base Languages 17
5.1 A Meta-Model of a Hierarchical System 17
5.2 IDEFO Meta-M odel ... 18

5.2.1 IDEFO Object Hierarchy 18
5.2.2 Concept Hierarchy 21
5.2.3 Links and Paths 21
5.2.4 Path ... 22

5.3 XSpec M odel ... 23
5.3.1 Object Hierarchy 23

5.3.2 Terminal Hierarchy ... 23
5.3.3 Paths .. 26
5.3.4 Cable Hierarchy 26

6. The Coinbii,•d M odel ... 28

6.1 Relation Between IDEFO Model and an XSpec Model 28
6.1.1 XSpec and IDEFO Externals 28
6.1.2 Base Mechanisms 29
6.1.3 Foreign Flows and Transactions 30
6.1.4 Consistency .. 31
6.1.5 Rem arks .. 31

iii

6.2 Relation Between IDEFIx and XSpec Models 32
6.3 Relation Between IDEFIx and IDEFO Models 33
6.4 Restrictions Placed on Models 33
6.5 The Modeling Process Using the Combined Toolkit 34
6.6 The Combined Meta-Model 38

6.6.1 Base Mechanisms and Externals 38
.. 6.2 External concepts 40
6.6.3 External Messages 41
6.6.4 Transactions 41
6.6.5 Foreign Path 41

6.7 Generating a Prototype XSpec Model 44
6.7.1 Defaults .. 44
6.7.2 Generation Algorithm 45

iv

List of Figures

Figure 1: An IDEFO Activity .. 2
Figure 2: A Simple IDEFO Diagram of a Manufacturing System 3
Figure 3: The Tree Representing the Activity Decomposition of an IDEFO Model 4
Figure 4: Concept Joins and Splits 5
Figure 5: IDEFIx Entities .. 7
Figure 6: A Simple IDEFIx Model of a Student Record System 10
Figure 7: A Component Diagram 13
Figure 8: An IDEFIx Model of a Hierarchical System 18
Figure 9: The IDEFO Object Model 20
Figure 10: The Concept Hierarchal System 21
Figure 11: IDEFO Links and Paths 22
Figure 12: THE XSpec Object Model 24
Figure 13: The Terminal Structure 25
Figure 14: The Cable Hierarchy .. 27
Figure 15: Example of Disjoint Nodes Which Cover a Tree 29
Figure 16: The Combined Toolkit 37
Figure 17: Base Mechanisms and Externals 39
Figure 18: Relation of Messages to Concepts 40
Figure 19: Relation of Paths and W ires 42
Figure 20: Combined IDEFO and XSpec Meta-Model 43
Figure 21: Prototype Model Generator 45
Figure 22: Recursive XSpec Diagram Generator 46

F For

NTIS OWt,,ýI

Ii A

V

Documen Number. M-CR-92-57a
Contrua Numbc,: F33615-91-C-5725
Project Number: FY 133-91.-M089 and AMD 001

A Combined Modeling Method Using IDEFO, IDEFIx and XSpec

1. Introduction

This report develops the major theoretical concepts for the integration of three diverse
engineering modeling languages: IDEFO, 1DEFIx, and XSpec. IDEFO is a high level modeling
tool based on functional decompositions, IDEFIx is a detailed data modelihg trol and XSpec is
a simulation tool based on object-oriented decompositions.

The approach used to integrate the tools is to develop a meta-model of each of the three
modeling languages. These meta-models are examined, and a single combined meta-model is
developed. All three systems use the same combined meta-model. This ensures that any changes
to the system made in one language is reflected in the other languages automatically.

The report is divided into the following sections. A short description of each of the languages
is given. These are not intended to be exhaustive, they are provided so that the reader is familiar
with the terminology used in each of the methods and to get a feel of the types of models each
language produces. The meta-models of IDEF-O and XSPEC are given. The approach used to
develop the combined meta-model is given. Finally, a complete description of the meta-model
is presented.

2. IDEFO

The Air Force Integrated Computer Aided Manufacturing (ICAM) program has developed several
standards for describing systems. These standards are collectively called the ICAM definitions
(IDEF). One of these standards is IDEFO which describes the functionality of a system or an
organization. IDEFO incorporates the principles of abstraction and modularity in a graphical
language.

2. 1 Activity Based Modeling

The basic modeling construct in IDEFO is an activity. An activity denotes the functions
performed by a system. An activity transforms a set of inputs. Unlike other function-oriented
modeling languages, IDEFO classifies the inputs to an activity into three categories: inputs,
controls and mechanisms. An input is something that is transformed by the function. A control
determines when the function is to be performed or it can constrain the function in some manner.
Finally, a mechanism is a resource that is required by the activity to perform the function.
Notice that inputs are consumed by the function, while controls and mechanisms are not.

An activity is represented by a labeled box. Unlike most graphical languages, each side of a box
has meaning. The left side is used for the inputs to the activity, the top is used for the controls,
the right side is used for the outputs and the bottom is used for the mechanisms. Inputs, controls,
outputs and mechanisms are collectively called either ICOMs or concepts.

I

Document Number: M-CR-92-57a
Conemt Number: F33615-91-C-5725
Project Number: FYI 133-91-05089 and AMD 001

Consider the situation where a person is to inspect parts coming off various machines. This

situation is easily modeled by an IDEFO activity. The incoming parts are the inputs to this
function and the inspected parts are the outputs. If a foreman determines the order that the parts
are to be inspected, then these decisions are the controls on the function. The design values on
the blue print are the constraints on the inspection process, and therefore, the blue prints are also

modeled as a control on the activity. The mechanisms are the inspector and the gauges he needs

to perform the inspection process. The graphical representation of this activity is shown in Figure
1.

inspection
Schedule Blueprints

41 4
Manchined Inscd
Parts Inspect Parts

Parts

Inspector Gauges

FIgure 1: An IDEFO Activity

A complete IDEFO diagram of a simple manufacturing process is shown in Figure 2. Arrows are

used to denote the connection of the outputs of one activity to the inputs, controls or mecu.anisms

of other activities. Each arrow is labeled with the concept that flows along it.

Activities have dominance. When constructing IDEFO diagrams, it is customary to put the

activities that occur first in the upper left corner of the diagram. Activities which occur later are

placed lower and to the right. Some ICOMs do not terminate on an activity box. These ICOMS

represent flows into and out of the system. These flows are called externals.

2

Document Number: M-CR-92-57&
Contract Number: F33615-91-C-5725
Project Number: FYI 133-91-0O08 and AMD 001

Process Part.

Ptodacdtm Stua and
Quality info

Routing info

2 comosditaion

PlacQss ssd

lbolsFaults

A primary feature of IDEF0 models is decomposition. Any activity in an IDEF0 model can be
decomposed into another entire IDEFO diagram sometimes referred to as the child diagram. The
concepts of the parent activity will serve as sources and sinks of concepts in the child diagram.

Although these look like externals, they are not since flows terminate on some other diagram in
the model. If an external occurs in a diagram, it is denoted by placing a set of parentheses
around the terminal end of the flow. An activity and its child diagram must be "plug-for-plug
compatible", that is, for each ICOM on the parent activity there must be a corresponding sink or
source in the child diagram.

The decomposition of activities is recursive. It is standard practice that the top level IDEF0
diagram only contains a single activity. This activity denotes the entire system. The arrows then
represent all of the flows which cross the boundary of the system. Such a diagram is called the
context diagram.

3

Document Number: M-CR-92-57*
Contract Number: F33615-91-C-5725
Project Number: FYI 133-91-05089 and AMD 001

Activity decompositions are easily represented by a tree. Each node in the tree is an activity in
the IDEFO model. The root of the tree is the single activity in the context diagram. The nodes
attached to the root of the tree are the activities in the child of the context diagram, and so forth.
An example of this tree is shown in Figure 3. The activities at the leaves of the tree are called
the base activities. The collection of all the base activities are all the functions that are actually
performed by the system. The other activities are artifacts of the modeling process. They
represent logical collections of base activities and act as an aid in understanding the system. A
model whose decomposition can be represented by tree is called a hierarchal model.

.... AO

. .
..

. . .
.Figure;- 3..........: ' e Rt Ac":vity 'e:-mpo,' o ",o fM.....E.Oconcep .are.decomposed just.. lep

a

as\

" -''''"':: -' ';.''''''--" '-'-:

. o.. °.... °....°.....% ... , o .o ..

. .:. .:.'.:.:. :.'.;. .'.B.

.ig re . : The Tree .e t .he .vMode...............

In~~~~~~~~ .DF .ocet . r deopoe jus .ik .ciiis .o .xml .h .ocp "p.s .a .be
composed~~~~~ of .h .ocp .go .at" ".a .at" .mcie p.ts .n "ise.e .parts".
"Machined~~~~~ p.ts . a . e . ute deopoe int .te .ocps .h .eopsto of .concepts.

is~~..... A34w Arpial32a DF igrmb roswihaesli rjie.Freape
supos te onep Aiscopoed f hecocets...d..Al.br...l..h.....e ente

..
...

Document Number. IT-CR-92-57a
Contact Number F33615-91-C.5725
Project Number FYI 133-910509=ad AMD 01

If A is the output of one activity and B and C are inputs of two different activities, then the
IDEFO diagram would show a split of the arrow corresponding to the A concept (see the partial
IDEFO diagram in Figure 4). Also notice how concepts X, Y and Z are joined together to form
the single concept M which is the input of some activity in the model.

C

Figure 4: Concept Joins and Splits

There are many minor details about the syntax of IDEFO models that has not been described here.
These are mainly concerned with drawing and labeling conventions. Since these conventions are
not important to the main thrust of this work, they will not be discussed.

2.3 IDEFO Method

This section describes the typical IDEFO modeling process. This description focuses on just the
creation of the IDEFO model and not on the other activities involved in a larger modeling effort.
The modeling process consists of the following major steps.

1. Gather Information. The first step in creating an IDEFO model is to gather
information about the system to be modeled. Information sources usually include:
documents about the system, interviews with experts, surveys of the users of the
system, observation of the existing operations, and information from previous
related projects.

2. Determine the Purpose and Viewpoint. IDEFO models have a specific purpose
and viewpoint. The purpose is defined as stating the question that the model must
answer and the viewpoint is the perspective from which the model is to be
described. The analyst should document these early on in the modeling process.

Document Numbr. M-CR-92-57a
Contrac Number. F33615-91-C-5725
Pmject Number FY1133-91-05089 and AMD 001

3. Create Data List. From all the information that was gathered, all the potential
concepts are listed. Concepts are things that are used during the operation of the
system. Concepts are grouped into aggregates. That is, the concepts which seem
to belong to the same categories are grouped together.

4. Create Activity List. From all the Information that was gathered, the functions
or activities that are performed by the system are listed. The categories of data
that are used by each function are then listed. This may help in further aggregating
the data lists. Finally, the activities are clustered to create an initial activity
hierarchy.

5. Defkie Context. The context diagram is drawn. This will clearly indicate the
scope of the system and the concepts which are the interface to the external world.

6. Decompose the Activities. The subject of an activity to be decomposed is
considered. The analyst determines how the activity performs its function within
the purpose and viewpoint of the model. A trial set of activities is drawn for the
child diagram. The arrows that touched the boundary of the parent activity are
connected in the child diagram. A data list for the child diagram is created. The
activities in the child diagram are connected and alternative decompositions are
attempted.

7. Review the model. All the IDEFO diagrams in the model are reviewed to check
for consistency. Alternative decompositions and concept bundlings are tried. The
model is checked to see if it meets the original stated purpose. All the data and
activities that were initially listed are checked to see if they have been modeled.
The model is checked for clarity and revised as appropriate.

3. IDEFlx

Another modeling standard that resulted from the ICAM effort is IDEFIx. IDEFIx is one of
several related methods used to model the data used by an organization or a system. The primary
purpose of the IDEFIx methodology is to model the conceptual schema of the data for the three
schema database system as defined by the ANSI SPARC report on database design. Some tools
can take an IDFlx description and automatically generate tLe 'atabase schema designs.

3. 1 Entities

The main modeling concept in IDEFIx is the data entity. A data entity represents a set of data
instances. For example, the entity "Student" may keep the data about each student in a large
university. It is important to realize that entities represent the data kept about an object, and they
are not a representation of the physical object itself.

6

Document Nutber TMI-CR-92.57&
Conarc Number F33613-91-C-5725
Project Numbern FYI 133-91-05089 and AMD 001

There are two types of entities: identifier-independent and identifier-dependent entities. An
entity is identifier-independent if each data instance in the set represented by the entity can be
uniquely identified without determining its relation with other entities in the model. An entity
is identifier- dependent if unique identification of its data instances do depend on its relation to
other entities. Identifier-independent entities can exist by themselves, while identifier-dependent
entities are meaningless without their connection to other entities in the system. For example,
the entity student is an a identifier-independent entity, each student can be identified by the
student number or social security number; while an entity which represents an item in a purchase
is meaningless without its connection to to the purchase order, and therefore, it is
identifier-dependent.

Graphically, entities are denoted by boxes. If the box has square comers, then it represents an
identifier-independent entity. Round comers are used to represent identifier-dependent entities.
Each entity is assigned a unique name which is placed on top of the box. Figure 5 illustrates
some examples of entities.

Student Purchse-Order

Student-ID PO-Number

$SN (AKI) CustomerNUNc Customer-Address

Conuins

PO-Item I P

Item-Number

figure 5: IDEFIx Entites

7

Documet Number M-CR.92.57a
Contract Number F33615-91-C.5725
Project Number: FY!133-91-05089 and AMD 001

3.2 Attributes

Attributes represent a characteristic or property of an entity. An attribute instance is the value
of the attribute for a single entity instance. Attributes have unique names.

An entity can own any number of attributes. However, an attribute can only be owned by a
single entity. Attributes are shown on the model by listing their names, one per line, in the entity
that they are associated with. In Figure 5 above, "Student-ID", "SSN", and "Name" are all
attributes of the entity "Student".

Every instance of an entity must have a value for every attribute; this is called the "no null" rule.
Also no instance of an entity can have more than one value for an attribute associated with that
entity. This is called the "no repeat" rule.

3.3 Keys

Every entity must have an attribute or a combination of attributes that uniquely identifies each
data instance for the entity. These attributes form the primary key for the entity. Primary keys
are listed in the top section of the entity. They are separated from the rest of the attributes by
a horizontal line. In Figure 5, Student-ID is the primary key for the entity "Student" and the
combination of the attributes PO-Number and Item-Number form the primary key for the entity
"PO-item".

In addition to attributes which are owned by an entity, an attribute can be inherited through a
relation. In any IDEFIx model, a child entity can inherit any of the attributes that appear in the
primary key of its parent entity. Inherited attributes are called foreign keys and are denoted by
a FK in parenthesis after the attribute name. Foreign keys can be part of the primary key of the
child entity. This is the case for the "PO-Item" entity in the above figure.

A single attribute may be inherited along two relations. In this case a role name can be prefixed
to the attribute name. The role name is separated from the attribute name by a period. Role
names are usually related to the relation that the attribute was inherited across.

Occasionally, there are several attributes (or combination of attributes) that can form the primary
key for an entity. Only one of these attributes is assigned to be the primary key, the other
attributes are called alternatc '-eys. Alternate keys are denoted by an AK in parenthesis after the
attribute name. If there is more than one alternate key for a given entity, then an integer suffix
on the AK is used to uniquely identify each alternate key. For example, SSN is an alternate key
for the "Student" entity.

3.4 Relations

Entities are related to one another. The relations are shown by lines connecting the entities in
an IDEFix diagram. A relation is an association between two entities in which each instance of
one entity, called the parent entity, is related to zero, one or more instances of a second entity,

8

Document Number. M-CR-92.57&
Contract Number. F33615-91-C-5725
Project Number. FYI 133-91-0505 and AMD 001

called the child entity. An example, is the relation between the "Purchase-Order" and the
"PO-Item" entities in Figure 5. The child entity is denoted by a black dot placed at the end of
the line representing the relation.

A solid line depicts an identifying relation between two entities. The child entity of an
identifying relation is always an identifier- dependent entity. The primary key attributes of the
parent inherited by the child must be part of the primary key of the child. The parent in an
identifying relation must be an identifier-independent entity, unless it to is a child of another
identifying relation. A dashed line is used to denote an non-identifying relation. Both parent and
child in a non-identifying relation will be identifier- independent entities, or children of some
identifying relation.

Relationships are named. The names are placed next to the lines that denote the relation.
Relationship names are verb phrases such that a sentence formed by combining the parent name,
the relation name, and the child name expresses the intent of the relation. For example, The
sentence "Purchase order contains PO items" clearly expresses the intent of the relation between
the entities in Figure 5. The name of relations do not need to be unique within the IDEFIx
model.

Each relation has a cardinality, which specifies how many child instances may be related to a
single parent instance. IDEFIx supports four different cardinalities:

1. Zero, One or More Each instances of the parent entity is associated with zero,
one or more instances of the child entity. This is denoted by just a dot at the
child entity.

2. One or More Each instances of the parent entity is associated with one or more
instances of the child entity. This is denoted by the letter P (for positive) near the
dot at the child entity.

3. Zero or One Each instances of the parent entity is associated with zero or one
instances of the child entity. This is denoted by the letter Z near the dot at the
child entity.

4. Exactly N Each instances of the parent entity is associated with exactly N or more
instances of the child entity. This is denoted by the numeral N near the dot at the
child entity.

Occasionally, a relation between two entities cannot be represented in the simple parent child
paradigm of IDEFIx. For example consider the relation between the entities student and class.
Every student may attend several classes and classes will have many students in them. Neither
of these can be a child entity, since both are related to more than one instance of the other entity.
These are called non-specific relations, and are resolved by using an additional entity, whose
instances represent a single pairing of the instances of the two entities. This situation is shown

9

Documem Numb, ITI-CR-92-57a
Coobia• Number F33615-91-C-5725
Project Number. FYI 133-91-0M09 sad AM 001

in Figure 6. Each instance of the entity "Class-List" represents a class that a particular student
is taking.

sftdm- C&M.Nm

II Wanr

sm3=4-K

Figure 6: A Simple IDEFIx Model-of a Student Record System

IDEFlx also support categorization relations. A complete categorization relationship is a relation
between two or more entities in which one entity, called the generic entity, is related to an
instance of one, and only one, of the other entities, called category entities. For example, student
could be the generic entity and undergraduate and graduate could be the category entities.
Therefore, in this model any student is either a graduate or an undergraduate and can never be
both. An attribute in the generic entity instance determines which of the possible category
entities it is related to. This attribute is called the discriminator. The category entities share all
the attributes of the generic entity. In IDEFIx diagrams, however, only the primary key
attributes of the generic entity are explicitly shown as being inherited by the category entities.

A categorization relation is denoted graphically by a circle and two lines. The circle is connected
by a line to the generic entity, and the category entities are connected to the double lines. The
name of the discriminator attribute appears in the generic entity and is also written next to the
circle. Figure 6 shows a categorization relation.

A category relation can only have one generic entity. The category entities of one relation can
be the generic entity of another relation. An entity may be the generic entity for any number of
categorization relations. A category entity cannot be a child entity in a connection relation.

There is also an incomplete categorization relatioq.ý This slation is =aed in the early stages of
IDEFIx models, it is like the domplete 'c6tegoridtion relation, except that it recognizes the

10

Docur-m Number M-CR.92-57a
Coavct Number F33615-91-C.-5725
Projea Number: FYI 133-91-05089 nd AMD 001

possibility that there may be more categories to be added later. All the rules mentioned above
apply to both types of relations. Graphically, the only difference is that the incomplete
categorization is drawn with a single line.

3.5 Method

The typical steps taken in the development of an IDEFIx model are described below.

1. Collect Source MateriaL As with any modeling method, the first step is the
collection of the material needed to develop the model. Information sources
usually include: documents about the system, interviews with experts, surveys of
the users of the system, observation of the existing operations, and information
from previous related projects. Many times an IDEFO model is created first, and
the concepts of this model are used to identify many of the entities and attributes
of the data system.

2. Identify Entities. From the information gathered the entities are identified.
Entities are things that can be described. There has to be several instances of an
entity in the model and each entity must be uniquely identifiable. If a candidate
entity describes something, it is usually an attribute of the thing (entity) that it
describes. If an IDEFO model is used as a source of material the concept list will
contain potential entities. Remember that the IDEF0 model represents the flow
of physical parts as well as data. The physical parts should not be considered as
entities, but if data is associated with these parts, then entities should be defined
to describe this data. Finally, names are assigned to the entities.

3. Define Relations. Identify the relations among the entities defined in the previous
step. Some relations will be obvious. Other relations may be discovered by
considering all the possible relations among the defined entities.

4. Construct an Entity Diagram. All the entities and relations determined above are
placed on a diagram ignoring the keys and attributes. The parent, child and the
cardinality of each relation is determined.

5. Resolve Non-spedflc Relations. Appropriate entities are added to resolve all the
non-specific relations.

6. Determine Key Attributes. Using the attribute pool developed above, the key
attributes are determined for each entity. Some entities will have several groups
of attributes that can be a key for the entity. One of these must be selected as the
primary key. The others are alternate keys. Some primary keys may be a result
of inheritance, so the development of the primary keys of the
identifier-independent entities is done first. All the primary keys are migrated
along the relations to the child entities. Additional attributes are determined that

11

Document Number: M-CR-92-57a
Conact Number. F33615-91-C-5725
Project Number FYI 133-91-0509 and AMD 001

may be needed for the primary keys of the child entities. This process is
continued until all the primary keys are determined.

7. Identify Non-key Attributes. The remaining attributes are added to the entities.

8. Review and Refine Model. The model is reviewed to see that all the data has
been captured and that all the syntax rules of IDEFIx have been adhered to.
Appropriate changes are made as required.

4. XSpec

XSpec is a graphical language developed by the Industrial Technology Institute (ITM) which is
used to specify the interactions among the dynamic elements in a manufacturing system. The
main strength of XSpec is that it specifies the structure of the system by decomposing it along
physical boundaries. At the lowest level in the decomposition is an element. Further
specification of each element is done in a language best suited for modeling the behavior of that
element. Therefore, a manufacturing system is represented by many interconnected elements,
modeled in diverse languages, with XSpec modeling the interactions.

XSpec system models provide enough detailed information that executable models can be created
and simulated from the element specification. The specification is split across engineering
disciplines, and encapsulated in the element structure. Executable code for the elements can be
written on different simulation tools, each specializing in that discipline. The entire system is
then simulated on an integrated tool such as XFaST which was developed by ITI. The dynamic
performance of the system can be studied. This provides a powerful tool to design and analyze
complex, interdisciplinary systems. Ultimately, the simulation source code becomes the
specification for each element.

4.1 Elements

XSpec uses a construct called an element to represent, encapsulate and model the behavior of a
portion of the system from the perspective of a single engineering discipline. Each element is
a partial model created and executed on a tool designed for a particular engineering discipline.
An element, like an object in object-oriented systems, includes data (state) and procedures
(methods) which operate on that data. These models are built in such a way that they can be
plugged together with other elements and executed on a computer.

Element models are written and executed on appropriate tools for their domain. These element
models, which exist on diverse tools, are executed in a coordinated fashion. The tools are
integrated into the XFaST framework which allows the individual elements to communicate with
one another even if they are on different tools. Since XFaST is just a framework and not a
design tool, it maximizes the leverage obtained by using existing design tools.

12

Document Number. TI-CR.92.57a
Contact Number F33615-91-C-5725
Project Number FYI 133-91-050M tad AMD 001

4.2 Components

In XSpec a component is a means to group the elements written in several diverse domain
specific languages so they can be manipulated as a single entity. A component represents a
cohesive functional unit of the system such as a servo mechanism, a robot, a machine, or even
an entire subsystem like a drive train on an automobile.

Components and elements are connected together in a component diagram. These connections
represent the interaction among the entities. Figure 7 depicts a typical component diagram.
Components are represented by rectangles, elements by circles and the interactions by lines
connecting the entities.

/ '.

Jlgtu 7: A Component Daag~am

Component diagrams are organized in a series of levels each providing more detail about one of
the components in the diagram above it. At the highest level is a sytem context diagram. This
diagram consists of a single component which represents the model of the entire system
connected to all its eternal agents.

13

Document Number: M-CR-92-57&
Coomm Numbe. F33615-91-C-5725
Pojm NU*W. FY1133-9105S9 ad AbM 001

A component serves as a structure to group related XSpec entities. Such a grouping operation
allows a natural approach to system decomposition, provides a consistent notation for all
disciplines, and enforces good design practice.

4.3 Messages, Pins, Connectors and Cables

XSpec uses the term message to describe all interactions between XSpec entities. An interaction
is any flow of mass, energy or information between two parts of a system. The types of
interactions are defined in the interface of each XSpec entity using pins that are grouped into
connectors. A pin serves as the specification for an interaction (or message) between XSpec
entities. It defines the type of the message and the types of the parameters it contains. The
location of a pin identifies the source or destination of the message.

Messages are categorized into the following four classes:

1. Event. An event is a parameterless message which is used to model the instant
that something occurs. Events are sed primarily to model sensor firings and
simple actuations.

2 Signal. A signal is a single parameter message. The parameter on a message is
valid at all times. Signals are used to model discrete or continuously varying
phenonema like temperature, position and velocities.

3. Command. A command is a multi-parameter message which is used to instruct
an element to perform some function. Commands can be used to model both
physical and data flows. The arrival of a part (the parameters describe the part),
a move command to a robot from a controller, or a person entering data into the
system can all be modeled by commands.

4. Request. A request is similar to a command, except the receiving element must
eventually respond to the request. If a robot responds to the controller after each
move command is finished executing, then the move should be modeled by a
request, with the done indication being the response

Pins are strongly typed. Each pin specifies the message that flows across it, and the direction
of the message (whether the message flows in or out of the element the pin is on). Messages
can only flow between compatibly typed pins,

Messages flow along cables which connect pins among entities in a component diagram. A pin
specifies the nature of an interaction between two entities, while a message represents a specific
instance of that interaction.

14

Document Number. IT-CR-92-57a
Conwrat Number F33615-91-C-5725
Project Number: FYI133-91-0089 and AMD 001

4.3.1 Pins

A pin defines a single type of interaction that is available for an element or a component. Since
all interactions occur through messages which are essentially data in the model, the interactions
can be specified by typed data structures. Pin specifications are nothing more than the type
definition of the message.

4.3.2 Connectors

Pins are grouped into connectors. The names of each connector on an entity must be unique.
A connector provides a "window" or logical destination for messages. A message is sent to (or
received from) a connector and pin pair. That is, the element sends a message by specifying the
name of the pin and the name of the connector that the pin is on. The actual name of the
connected element is not needed to either send or receive a message.

As components serve to group elements and components, so a transaction is used to group pins.
Many times an interaction between two elements cannot be specified by a single message. For
example, to model a power transfer between elements requires two signals. one for effort and the
other for flow. It then makes sense to group both of these signals together in a single transaction
to indicate that they both must be connected. Cables are a convenient tool that can be used to
represent the flow of the entire transaction.

AU indexed connector defines an array of like connectors that can be attached to multiple
elements. An indexed connector is represented by a box drawn with a double line boundary.
The double boundary is meant to imply the existence of multiple connectors, all of which have
the same set of pins. Individual connectors in the group are referenced by the connector index.

4.3.3 Cables

When an XSpec component diagram is created, elements are created or retrieved from a library
and their pins graphically connected together by wires and cables. Wires define how messages
are routed among the elements by connecting pins on one element to the pins on another element.
Cables bundle wires with common endpoints. Cables ame generally not named. However, when
several paths are connected to an indexed connector, each path is labeled with the index of the
connector that it is attached to.

When a path is created, pins and subconnectors on one end of the path are automatically
connected to pins and subconnectors at the other end with identical names, identical parameter
types, and compatible pin types.

Cables, pins and messages form a three level abstraction mechanism for modeling interactions
among elements. Cables indicate that an interaction exists between two elements without
defining the details of that interaction. Component diagrams show the cables, so with a quick
glance at the diagram designers can, identify the interacting elements. Pins provide a ,detailed
definition of the type of the interaction by defining The direction of information flow, the kind

15

Document Numbe- M-CR-92-57a
Cocnua Number. F33615-91-C-5725
Projmc Number. FYI 133-91-05099 and AMD 001

the type of the parameters associated with the interaction. Finally, messages define the specific
instances of each interaction along the time axis during the execution of a model. Separating
these levels of detail aids in building the models, since many times the existence of an
interaction, the details of an interaction type and the occurrence of the interaction are determined
at different stages of model building.

4.4 Method

This section describes the typical XSpec modeling process. This process assumes that the XSpec
model is created in isolation and is not part of a larger modeling effort. The modeling process
consists of the following major steps.

1. Gather Information. The first step in creating an XSpec model is to gather
information about the system to be modeled. Information sources usually include:
documents about the system, interviews with experts, surveys of the users of the
system, observation of the existing operations, and information from previous
related projects.

2. Create Initial Components. From all the information that was gathered, the
initial components are determined. These are usually identified by decomposing
the system along the physical boundaries of the system. The components are
decomposed into elements, with each element representing a particular engineering
view of the component. Typical elements are the model of the physical aspects
of the component and a model of the software needed to control the system.

3. Define Context. The context component diagram is drawn. This will clearly
indicate the scope of the system. An initial component hierarchy is developed.

4. List Connectors and Transactions. From the functions that each element must
perform, the types of transactions each element needs to perform is determined.
A connector for each transaction on the elements is created.

5. Create cables. The elements are connected. The function of each element is
reviewed and any additional transactions that are needed for the element to
perform all of its requirements are added. Connectors are added to components if
transactions flow across them. These component connectors are grouped based on
common destinations. All the compohent diagrams are constructed.

6. Decide on Pin Definition. The specific messages required for each transaction is
designed. The pins and wires for each of these messages is added along with a
complete specification for each pin.

7. Develop Elements. Based on the required functionality of each element, a model
of the interactions of all the pins on the element is developed. This is usually

16

Document Number: M-CR-92-57a
Contract Number. F33615-91-C-5725
Project Number: FYI 133-91-05M9 ad AMD 001

done by modeling what happens when the element receives each of its input
messages.

8. Simulate the Model. All the element specifications are transferred to executable
simulation code, and the model is executed. The element definitions are refined
based on the dynamic performance of the system.

9. Review the modeL All the component diagrams in the model are reviewed and
checked for consistency. Alternative component decompositions are tried. The
model is checked to see if it meets the system requirements. The clarity of the
model is checked and the model is revised as appropriate.

5. Meta-Models of the Base Languages

This section describes the meta-models for the IDEFO and XSpec modeling languages. The
purpose of these meta-models is to express the relations among the various data elements present
in each of the modeling languages. The meta-models are expressed in IDEFIx notation. The
ultimate goal is to describe a way to combine these individual meta-models into a single
meta-model which represents the entire system.

5.1 A Meta-Model of a Hierarchical System

The IDEFO and XSpec modeling paradigm have many hierarchical systems embedded in them.
For example, activities and concepts form hierarchical systems in IDEFO and components,
connectors and cables are hierarchical systems in XSpec. So before proceeding with the
description of the meta-models for IDEFO and XSpec, a meta-model of a generic hierarchical
system is described.

Every hierarchical system has a root object. The root object is decomposed into several other
objects. This decomposition continues recursively until objects are reached that cannot be further
decomposed. These are called the base objects. The IDEFIx model of such a structure is based
on the following two observations:

1. Every object is either the root object or it is contained in some other object.

2. Every object either contains other objects or it is a base object.

An object that contains other objects is called a composite object.

These two observations suggest that a hierarchical system can be represented by a generic object
entity which is related to four category entities through two classification relations (see Figure
8). To complete the data model, a non-identifying relation is used to identify the objects that are
contained in a composite object.

17

Document Number M-cR-92-57a
Conoc Number: F3365-91t-C.S725
Project Number FY1133-91.45 W AMD 001

Object

Smnd-Alooe-Object Object-n-A-Coutpoute Compow-wObject nae-Objc

Flgur 8: An IDEFIx Model of a Hierarchical System

5.2 IDEFO Meta-Model

The IDEFO meta-model is illustrated in Figures 9, 10and 11. The entities in an IDEF model can
be classified into three broad classes: objects, concepts and interaction among objects. Each of
the entities and relations among the entities for the IDEFO meta-model are explained in detail in
this section.

5.2.1 IDEF0 Object Hierarchy

An IDEFO-Object is either the entire IDEFO model, an activity, an external, or a place where
concepts join or split. Figure 9 illustrates the categorization of an IDEFO-Object. The
IDEFO-Object is first classified as either the entire model or a connectable object. An
IDEFO-Connectable-Object is an object which is connected by concept flows to other connectable
objects. The IDEFO-Model is a single entity that is used to represent the context diagram (the A-O
diagram) of the IDEFO model. Clearly this object is not connected to other objects in the model.
All IDEFO objects have names and descriptions. These are recorded in the I-Description and
I-Name attributes of the
IDEFO-Object entity.

18

Document Number M-CR-92-57*
Coanact Number: F33615-91-C-5725
Project Number: FYI133-91-509 wAd A 001

Connectable objects form a hierarchical system. However, a slight modification has been made
in the standard hierarchal system meta-model developed in the previous section. Base objects
can be one of three types:

1. Base-Activity - an activity which is not further decomposed.

2. IDEFO-External - a source or sink of concept flows which are external to the
context of the model.

3. Join-Split-Merge-Spread - are points on an IDEFO diagram at which concept flows
either join, split, merge or spread..

IDEFO syntax does not have graphical symbol for an external. So graphically an IDEFO-External
is nothing more that a point in the IDEF diagram. We have include this as a separate entity to
simplify the modeling of concept flows. Flows must always start and terminate on an
IDEFO-Object. Like externals, Join-Split-Merge-Sptead entities do not have a graphic symbol
associated with them. They represent the actual point that a concept join, split, merge, or spread
takes place in the diagram.

Notice that the LDEFO-External and Base-Activity entities are grouped together into a generic
entity called IDEFO-Producer-Consumer. Both of these entities can be terminal points for an
IDEFO-Path, (IDEFO-Paths are explained in detail later) and so it is convenient to create a generic
entity for them.

Notice that there is a relation between the IDEFO-Model entity and the root entities in the
connectable object hierarchy. Clearly, given the syntax of an IDEFO model, if an IDEFO-Object
is not in a connectable object, the only other place it can exist is in the context diagram, that is,
the IDEFO-Model entity.

Finally, the attributes I-Size and I-Position in the entity IDEFO-Connectable-Object stole the
appropriate information to plot the objects.

19

Docuyv-n-t Nuznber- r-CR-92-57a
Coetrac Number. F33615-91-C-3725
Pzwjmc Number: FYI 133-91-.05SM and AMD 001

rl-) F K) r.U(K

L

F~gur 9: The MDFTO Object Model

20

Document Number: M-CR-92-57&
Contract Numbe-. F33615-91-C-5725
Project Number: FY 1133-91-05039 and AMD 001

5.2.2 Concept Hierarchy

In the IDEFO modeling paradigm, concepts form a hierarchal system. The entities and the
relations that describe the concept hierarchy follow the generic hierarchal system developed at
the beginning of this section. Every concept has a name and description stored in the attributes
C-Name and C-Description. Figure 10 shows the concept hierarchy.

C-ID
C-Na:
C-Description
C-I11
C-Type

C-In CType

C-ID (FK) C-ID (FK) COM -ID (F)fC-ID (

CoaceptCoqW C-ID (FK) 1 _ _

Figure 10: The Concept Hfierarchal System

5.2.3 Links and Paths

Links define how a concept connects two ID)EFO-Objects. Figure I11 shows the portion of the
meta-mnodel dealing with links. Each I]DEFO-Connectable-Object can have several Links. This
is modeled by the Contains relation. Associated with each Link is a single concept, which is
modeled by the Defines relation. The start and end of a link arm classified as either an input, an
output, a control or a mechanism, which is recorded in the In-ICOM and Out-ICOM attributes.
These attributes are given the value N/A if the connection is on an IDEFO-External or a
Join-Split-Merge-Spread entity.

Links must also maintain the geometric path that will be used to 4;aw them. This information
is stored in the Link-Geomnetry attribute. To ease the drawing of In-EFO diagrams, a Contains
relation between Links and IDEFO objects is created. This relation specifies all the links that are
contained in the child diagram of a particular activity.

21

Document Number M-CR-92-57a
Conauc Number F33615-91-C-5725
Projec Number: FY 1133-91-0"89 and AM 0001

5.2.4 Path

Paths are not part of the IDEFO methodology and therefore could be left out of the meta-model.
However, paths provide a critical link to the XSpec models and thus will be described here.

An IDEFO-Path is defined as the connection of a single base concept between two IDEFO-
Producer-Consumers. If a connection between the two IDEFO-Producer-Consumers is a
composite concept then there are several paths: one for each base concept in the composite
concept. Since paths are only associated with base concepts there can be no joining or splitting
of paths in the model. Each instance of the IDEFO-Path entity defines a path by specifying the
two IDEFO-Producer-Consumers it connects and the. Base-Concept that flows along it.

I ID_ _ II
I-Typ

-- C--

I-Cin-TCp,

r__ i ,

S [• IJ.I1.ID (Fl)

gasm

Figure 11: IDEFO Lik and Paths

22

Document Number rn-CR-92-S7a
Con-act Number F33615.91-C-5725
Projew Number: FYI 133-91-05089 md AMD 001

5.3 XSpec Model

The XSpec meta-model is given in Figures 12, 13 and 14. A detailed description of the entities
and their relations is given below.

5.3.1 Object Hierarchy

The XSpec-Object structure is very similar to the IDEFO-Object structure. Figure 12 illustrates
the model for XSpec-Object entities. XSpec-Object is first classified as either a connectable
object or the entire XSpec model. XSpec-Connectable-Objects follows the standard hierarchal
structure introduced in the beginning of this section. Similar to the IDEFO-Object hierarchy the
root objects are contained in the XSpec-Model entity. The base objects are further classified into
Element and XSpec-External categories. Both of these objects are categories of the generic entity
XSpec-Producer-Consumer.

Every XSpec-Producer-Consumer is an executable object and therefore is related to the entity
Tool that represents the simulation tool that they are executed on. The Tool entity stores
information about the simulation tool such as its name, description and the templates that are
used to create the shell elements. This information is stored in the appropriate attributes of the
Tool entity. In the early stages of an XSpec model, the tool which will simulate each entity may
not be known. So the zero or one relation, Is-A and the Executable-Producer-Consumer entity
are included so that these early XSpec models can be represented. In a completely specified
XSpec model each XSpec-Producer-Consumer must also be an Executable-Producer-Consumer.

All XSpec-Objects have names and descriptions which are stored in the attributes X-Name and
X-Description. The position and size of all XSpec-Connectable-Objects must be known in order
to draw them. This information is stored in the attributes X-Position and X-Size.

5.3.2 Terminal Hierarchy

The terminal structure is illustrated in Fig 13. Terminal entities represent both connectors and
pins in the XSpec model. Since connectors can be in a hierarchy the standard hierarchy structure
is used to model XSpec terminals.

All terminals are related to the object that they are on. Terminals have a name, a description,
a size, and a position attribute. The base terminal entity is a pin. Pins are further categorized
into Unspecified-Pin and Specified-Pin categories. This is included in the meta-model to
facilitate storing partial XSpec models. In a complete XSpec model, all pins must be fully
specified.

To fully specify a pin, its Pin-Direction (whether it is an input or an output pin) and a complete
definition of the message that is associated with the pin must be defined.

23

Documexnt Number. M-CR.92-57a
Coauaw Number. F33615-91.C-S725
Projecz Number FYI 133-9t.05069aWdAMD 001

X~w-ObjwTool
X-ID o-D

X-Nm ITool-NmI

X.Typs [3ýTa j

1 ~X.'TMp

rm~ximi-zzzzz)
rX-MM) X-z

CouamXj'

Figurek 12 H ze Ojc oe

U-i

X.C=-24

Document Number: M-CR-92.57&
Contrau Number F33615-91-C-5725
Project Number: FYI133-91-05089 and AMD 001

The message definitions are specified in another entity called Message -Description and its related
entities. This was done since many pins may share the same message definition. The name and
description of the message are recorded in appropriate attributes of the Message-Description
entity. The kind of message is recorded in the attribute M-Kind (event, signal, command, or
request). Since messages contain an indeterminate number of parameters a Message-Parameter
and Reply-Parameter entity are defined, which in turm are related to an Attribute entity which
specifies the data type of the parameter. The Reply-Parameter is only used for request/reply
message types. The Attribute entity will form a link to the IDEFIx meta-model.

Ukf

rrurn1

F•ur 13: The Terial Structw•

25

Document Number M-CR.92.57%
Conuatt Number: F3361S-91-C-5725
Project Number: FY1133-91-05089 and AMD 001

5.3.3 Paths

Ultimately a pin on an XSpec-Producer-Consumer must be connected to another pin on a
different XSpec-Producer-Consumer. This connection is modeled by an XSpec-Path entity (see
Figure 13). XSpec-Paths play the same role as IDEFO-Paths. XSpec-Paths only need to be
related to the Pins at its endpoints, since the Pin attributes contain the X-ID of the object they
are on and a relation to the Message-Description. There are a few constraints on the Pins that
are the terminal points of an XSpec-Path"

1. XSpec-Paths can only terminate on fully specified Pins.

2. The two Pins and their associated Message Descriptions must be compatible, that
is, they must be of the same type and have the same message specification.

3. The Pin associated with an XSpec-Path through the Begin relation must have an
out direction.

4. The Pin associated with an XSpec-Path through the End relation must have an in
direction.

A Z cardinality are used on the Begin and End relations, since all pins do not need to be linked
to a path. This allows partial models and potentially unconnected pins to be stored.

5.3.4 Cable Hierarchy

Cables join pins and connectors. They have a similar role as Links in the IDEFO meta-model.
However, since the Terminal entities form a hierarchal system, cables must also form a hierarchal
system. They are modeled by the standard entity structure introduced at the beginning of this
section (see Figure 14). The base cable object is a Wire. Wires are used to connect Pins. The
composite object for cables is Bundle. Bundles are used to join connectors. Wires are related
to the pins they connect and bundles are related to the connectors they join.

Pins and connectors on elements will have only one wire or bundle attached to them. Pins and
connectors on components will have two cables attached to them. The Begin and End relation
between Bundle and Connector or between Wire and Pin does not imply a direction flow of the
messages bundles and wires carry.

* A cable is contained in the XSpec-Object that represents the diagram that the cable is drawn in.
This is modeled by the Contains relation. By the construction rules of an XSpec diagram, it is
clear that a cable can be contained in only one XSpec-Object. Only the root cables (cables that
are not contained in bundles) are drawn in the XSpec diagram. Therefore, only the root cables
need to have an attribute to record their geometric path in the diagram. This is done by the
Cable-Geometry attribute.

26

Document Number M-CR-92-37a
Contract Number. P33615-91-C.S725
Project Number. FYI 133-91-M509 awl AMD 001

X-oeCAbI.I-ude cbeI.
T.Type i~~lK

X-!D MK

F~~~gure~Cbl 4in CbeHirrh

aMM

x 27

Document Number: M-CR-92-57a
Contnct Number: F33615-91.C-5725
Project Number: FYI133-91-05089 and AMD 001

6. The Combined Model

The objective of this research is to integrate IDEFO, XSpec, and IDEFIx models. This is
accomplished by combining all three of these modeling languages into a single meta-model which
describes how these languages (and models developed with these languages) are related. With
this meta-model the system model can be thought of as a single representation which exists in
some multi-dimensional space. IDEFO, IDEFIx, and XSpec can be viewed as modeling languages
which can illustrate and manipulate a certain subset of all the dimensions of the system model.

What makes the problem difficult is that these dimensions overlap. By creating a single
meta-model that represents the system, any changes that one modeling language makes are
changes to the system. Then when any other language is used to view the system it should
automatically view it with the changes in place. This process is analogous to modern CAD
systems, where a change in a front view of a part is automatically reflected in the side and top
views. This is because the change is made to the representation of the part not just to the view
of the part.

This section describes the relation between the three design models. It specifies the changes that
are needed in each of the design methods to support the integration. Next, the consistency rules
are defined. A proposed design process using the integrated tools is given. Finally, the IDEFIx
meta model of IDEFO and XSpec is described.

6.1 Relation Between IDEFO Model and an XSpec Model

An IDEFO model is a high level model specifying the functions and flows among the functions.
The IDEFO model is based on a functional decomposition of the system. An XSpec model is a
specification of an executable model of the system. It is much more detailed than an IDEF0
model. XSpec models specify the executable modules of the system and the flows among the
modules. These modules may be either software or hardware components. These modules are
decomposed in a hierarchical fashion.

In general the functional decomposition in IDEFO and the modular decomposition in XSpec
follow very dissimilar paths. What we try to accomplish in the combined model is to insure
consistency at a given intermediate level in the XSpec hierarchy and the lowest level of the
IDEFO hierarchy. This allows XSpec models to add detail to the description of the system
without destroying the relation between the two models.

An XSpec model is connected to an IDEF0 model through four entities: XSpec-Connectable-
Object, XSpec-Extemal, Transaction, and Foreign-Wire. These relations are explained in detail
below.

6.1.1 XSpec and IDEFO Extermals

In an IDEFO model, there are points which represent the generation or removal of a concept from
the context of the IDEFO model. These points are termed IDEFO externals. Likewise, XSpec

28

Document Number ITI-CR-92-57a
Cocma Number. F33615-91-C-5725
Projea Number. FYI 133-91-0•W9 wad AMD 001

models have XSpec externals which generate or sink messages. Any XSpec external can be
associated with an IDEFO external when their messages and concepts are related (see Section
6.1.3). Every IDEFO external must be associated with a single XSpec external. However. an
XSpec external may be associated with several IDEFO externals. Since, XSpec models are more
detailed there may be an XSpec external which is not an IDEFO external.

6.1.2 Base Mechanisms

A base mechanism is an XSpec component or an element. Base objects are either a base external
or a base mechanism. Base objects must be part of a set which is both disjoint and covers the
component hierarchy tree. A set of nodes N in a tree are disjoint if all the paths from the leaves
of the tree to the root pass through at most one node in N. The set N covers a tree if all the
paths from the leaves of the tree to the root pass through at least one node in N. The set of
nodes marked by a "+" in Figure 15 cover the tree and are disjoint.

++

+ +

Figure 15: Example of Disjoint Nodes Which Cover a Tree

A base activity in an DEFO model is an activity which has no children. That is, the base
activities in an IDEFO model are the leaves of the activity hierarchy tree. Clearly the set of all
base activities are disjoint and must cover the activity tree.

Each base activity in an IDEFO model has a single XSpec base mechanism that has the
responsibility of performing that activity. In addition every base mechanism must be responsible

29

Document Number- ITM-CR-92-57a
Conac• Number: F33615-91-C-5725
Project Number FY1133-91-0508 Wn AMD 001

for performing one or more base activities. The XSpec model represented by the set of all base
mechanism is called the base XSpec model. Since base mechanisms are disjoint and cover the
model, the base XSpec model is a complete model of the system.

Allowing only a single mechanism for each base activitiy is not a large restriction. When it
appears that more than one base mechanism is responsible for an activity, then there is a leveling
problem between the IDEFO model and the base XSpec model. In this case the base XSpec
model is more detailed than the IDEFO model. When this happens, the designer should group
the base mechanisms that are associated with the same base activity into a component. This
component then becomes the new base mechanism. This will form a set of fewer, less detailed,
base mechanisms and will balance the level of detail between the models. Another type of
leveling problem occurs when a large number of base activities are mapped to the same base
mechanism. In this case the IDEFO diagram is more detailed than the base XSpec model and the
designer should consider replacing the base mechanisms with a set of more detailed base
mechanisms.

The mechanism notation of IDEFO models provides a convenient way to specify base
mechanisms. In addition, the portion of the XSpec component hierarchy above the base
mechanisms becomes the IDEFO mechanism hierarchy. If desired, the XSpec component
hierarchy above the base mechanisms can be defined on the IDEFO diagram through appropriate
joins of the mechanism concepts.

XSpec objects are static features of the model. Therefore, base mechanisms which are XSpec
components and elements must not be an output of some activity. This is not a big restriction.
When IDEFO models have an activity which is the source of a mechanism, this activity is
modeling the allocation of a resource. The allocation process can alternatively be represented
by a control flow which is used to select the proper resource.

6.1.3 Foreign Flows and Transactions

IDEFO models also contain a hierarchy of concepts. These concepts can be inputs, controls, and
outputs (mechanisms are now XSpec components and elements and will no longer be considered
as concepts.) The concepts which are composed of other concepts are called composite concepts
while those which have no children are called base concepts.

An IDEFO flow is the flow of a base concept between two base activities or between a base
activity and an IDEFO external. Flows are denoted by the lines connecting the activities in an
IDEFO model. Every flow is associated with a line in the IDEFO model. However, any given line
may carry multiple flows if it is associated with a composite concept. A foreign concept flow
is either between an external and a base activity, or between two base activities which are
associated with different base mechanisms. A local concept flow is between base activities which
are associated with the same base mechanisms. A base concept which is associated with at least
one foreign concept flow is a foreign concept. A local concept is associated with only local
concept flows.

30

Document Numb•r M-CR-92-57a
Conw=c Number: F33615-91-C-5725
Project Number: FY1133-91-05089 and AMD 001

As base mechanisms are used to map activities to the XSpec component hierarchy, so
transactions are used to provide a mapping between foreign concepts and XSpec messages. A
transaction is a group of XSpec messages which represents an IDEFO foreign concept flow.
XSpec messages associated with a transaction are called foreign messages.

A single base concept may be associated with different XSpec transactions. This allows a single
IDEFO concept to be represented by different sets of XSpec messages. For example, the
transaction to move a part may be different if a human moves it or if it is done by a robot. This
detail will probably not be expressed in the IDEFO model but will require a different set of
messages in the XSpec model. Every foreign flow in an IDEFO model is associated with a single
transaction.

Finally, we define the notion of a foreign message flow in an XSpec model. A foreign message
flow is a message which is sent either between an XSpec external and a base mechanism, or
between two base mechanisms. All other XSpec messages are local messages.

6.1.4 Consistency

We can now define the notion of consistency. Given an IDEFO model, an XSpec model, a set
of base externals, a set of base mechanisms and a set of transactions, the two models are
consistent if, and only if, all the following properties hold:

1. For every foreign concept flow in the IDEFO model, thcre exists a foreign
message flow in the XSpec model for all the messages in the transaction
associated with the concept flow. Further, all these messages must exist between
the two base mechanisms/base externals associated with the base activities/IDEFO
externals that are connected by the concept flow.

2. Every foreign message flow must be associated with a transaction.

The first condition ensures that all the concept flows in the IDEFO model are appropriately
modeled by messages in the XSpec model. The second condition ensures that there are no
extraneous messages in the XSpec model.

6.1.5 Remarks

Listed below are a set of remarks about the proposed way to combine the IDEFO and XSpec
models.

1. Since base mechanisms can have children in XSpec and concept flows can be
represented by multiple messages, then an arbitrary amount of detail can be added
to an XSpec model and it can still be checked for con-istency with IDEFO.

2. For a given base mechanism, all the activities associated with this component can
be identified. These activities can be collected and connected to form a

31

Documeat Number. M-CR-92-57a
Contact Number. F33615-91-C-5725
ProjectNumber FYI 133-9I..0W89 andAM 001

mini-IDEFO model. This mini-model will form an [DEFO specification of the
requirements for the base mechanism.

3. The activity hierarchy is not represented in the XSpec model.

4. The concept hierarchy is not represented in the XSpec model.

5. The connector and cabling hierarchies are not represented in the IDEFO model.

6. Local concepts and concept flows have no direct relation to messages in the
XSpec model. These concept flows may appear in XSpec as messages, a network
of elements within a base mechanism, or as some internal communication path
within an element.

7. Internal messages have no counterpart in the IDEFO model. Typically they
represent detail not present in IDEFO.

8. Components, elements, and wires internal to a base mechanism have no
counterpart in the IDEFO model.

6.2 Relation Between IDEFIx and XSpec Models

XSpec models the dynamic behavior of a system. IDEFIx models the data that is used by the
system. These two models do not share many features. The only link between the two is that
the parameters on the messages that query the database must be attributes in the IDEFlx model.

The link is accomplished by adding a store element to XSpec. Unlike other XSpec elements, this
is not a model of some dynamic portion of the system. Rather, this new type of element is a
window into the database for the system model. Messages to a store element can add, delete,
change, or interrogate the data stored in the database. As such all the parameters on all messages
terminating on a store element must be attributes in the IDEFIx model. Further the the message
parameters can be examined to see if they contain sufficient information to locate the data
element of interest.

In the combined model, each XSpec parameter is classified as either a dynamic parameter or a
storage parameter. All parameters on all messages terminating on a store element must be
storage parameters. All storage parameters are attributes in the IDEFIx model.

None of the IDEFO or XSpec model structures are used in the IDEFIx model. They may suggest
possible entities and relations, but are not directly used. Likewise, the entity diagram structure
of the IDEFIx model have no counterpart in either the IDEFO or XSpec model.

32

I ýumnt Number. M-CR-92-57a
Contrw Number F33615-91-C.-S25
Project Number: FYI 133-91-05089 and AMW 001

6.3 Relation Between IDEFix and IDEFO Models

There has been effort by others to use an IDEFO to help generate IDEFIx models. Most of this
effort has focused on the using the concepts in IDEFO as a start for identifying the entities and
attributes for the IDEFIx mdel. This can still happen. It is recommended that first an XSpec
model be created from the IDEFO model and then !he message parameters can become the
attribute pool. An alternative method is to develop the IDEFIx model from the IDEFO model
first, and then use the attribute list as a specification for many of the messages used in XSpec.
In fact. as long as the parameter list is frequently updated, the IDEFIx and XSpec modeling
efforts can proceed in parallel once the IDEFO moc:."' '; finished.

6.4 Restrictions Placed on Models

This section summarizes the additions and restrictions the combined modeling method has placed
on the three modeling tools.

IDEFO

1. The mechanism hierarchy becomes the XSpec component hierarchy.

2. Mechanisms are no longer part of the concept hierarchy.

3. Each base activity must be mechanized with.a single base mechanism.

4. Mechanisms cannot be an output of any activity.

5. Every IDEFO external must be associated with an XSpec external.

6. Every foreign concept must be associated with at least one transaction.

IDEFIx

1. The concept hierarchy and the transaction definitions can be used as sources for the entity
pool.

2. There must be an IDEFIx attribute for each storage parameter.

XSpec

1. Base mechanismnr have to be identified.

2. Base mechanisms must be a set which is both disjoint and covers the component
hierarchy.

33

Document Number. M-CR-92-57a
Coomct Number F33615.91-C-5725
Project Numbae: FYI 133-91-05089 and AMD 001

3. At least one base activity must be associated with ea,..- base mechanism.

4. XSpec externals associated with IDEF-O externals must be identified.

5. Foreign mescages must be associated with transactions.

6. There must be a foreign message flow for every message in each of the transactions
associated with foreign concept flows.

7. Partial IDEFO models are used as the requirements specification for a base mechanism.

8. Store elements are added.

9. Storage parameters must be identified.

6.5 The Modeling Process Using the Combined Toolidt

This section describes a typical modeling process using an integrated system of the three
modeling languages described +n this repot: IDEFO, IDEFIx, and XSpec. The process assumes
that after the IDEFO model is created, an XSpec model is developed. This is good practice if
there are significant dynamic elements in the system to be investigated. If the system is
primarily a data intensive application, then the creation of the XSper model could be eliminated.
The modeling process consists of the following major steps.

1. Gather Information. The first step is to gather information about the system to
be modeled. Information sources usually include: documents about the system,
interviews with experts, surveys of the users of tne system, observation of the
existing operations, and inf,.rmation from previous related projects.

2. Generate or. DEFO model.

a. Create activity and data lists. From all the information that was
gathered, list all potential concepts and group the concents into potential
aggregates. List all the functions or activities that are performed by the
system. Begin clustering the activities to create an initial activity hierarchy.

b. Define context. Draw the cantext diagram to clearly indicate the scope
of the system.

c. Create an IDEFO model of the system. Decompose the the activities
in the system. Connect the activities with appropriate concepts. Refine the
definitions of the activities and concepts. Do not mechanize this model.
Review and refine the IDEFO model.

31,

Document Nunber- M-CR.92-57a
Coana Number: F33615.91-C-5725
Project Number: FY1133-91-05089 and AMI) 001

3. Mechanize the IDEFO model.

a. Identify the base mechanisms for the model. A base mechanism is a
physical object or software module that performs a base activity in the
IDEFO model. Group the base mechanism into a hierarchical structure.
This structure is the initial component hierarchy.

b. Fully mechanize the base activities In the IDEFO model. Every base
activity in the IDEFO model must be assigned one, and only one, base
mechanism. A base mechanism can perform more than one base activity.

4. Generate a prototype XSpec model From the IDEFO model, generate a

prototype IDEFO model. This process is fully automatic.

5. Refine the XSpec model.

a. Refine each base mechanism. Depending on the complexity of the base
mechanism, determine whether it should be an element or a component.
Create the decomposition of the component if necessary.

b. Refine each transaction. Determine the set of messages required to
perform each transaction. Completely specify each message.

c. Continue to refine the message protocols. Check the inter-operability of
each element. Add new messages and refine the specification of cthers as
necessary. Add new elements and component structures as necessary.

d. Resolve Inconsistencies. Ideally, the combined model will keep the XSpec
and IDEFO models consistent with one another automatically. However,
since the models are not edited on tools designed to interact with the
combined model, consistency is checked when the the combined model is
updated, a report is generated, and the modeler resolves the
inconsistencies.

e. Review the XSpec model. Review the final model. Make sure that
each base mechanism performs all the required activities that were
specified in the IDEFO model. Refine the model as necessary.

6. Develop an IDEFUx model

a. Identify entitles. A good source for possible entities are transactions.
These form natural groupings of messages. Determine all of the
transactions that contain at least one message whose parameter is an
attribute. Consider the transaction as a possible entity.

35

Documm Number M-CR-92-57a
CoGUrMI Number. F33615-91.C-5725
Projec Number FYI 133-91-05089 and AMD 001

b. Identify attributes. Identify the the message parameters that are potential
attributes. Not all parameters may be attributes, since messages may
model physical flows as well as data flows.

c. Construct IDEFlx model. Determine the relations among the entities,
draw the entity model, determine key attributes, and determine the owners
of the non-key attributes.

d. Review and refine the model Review the model, check for consistency
with IDEFIx syntax rules, and add refinements as necessary.

e. Update the XSpec parameters. This is mostly an automatic process
since parameters are attributes. A problem that will occur if the IDEFix
model deletes an attribute which was a parameter on a message. A
consistency checker will flag these, a report generated, and the modeler
must adjust one of the models.

7. Identify Inconsistencies between the IDEFIx model and the XSpec model.
XSpec models all access to information in a database as queries to a store
element. The parameters in these queries must be attributes in the IDEFIx model.
The parameters can be checked to be sure that there is enough information to
access the proper entity instances.

8. Generate the simulation templates. Generate the templates for the executable
models of the XSpec entities. This is an automated procedure. The database
schema can be automatically generated from the IDEFIx model.

9. Code the elements. Create the executable simulation code for each element
template.

10. Simulate and refine models. Simulate the executable model. Adjust the IDEFO,
XSpec and IDEFIx models based on the performance of the simulations.

Figure 16 depicts how the various modeling tools cooperate in the development of a common
model that crosses the boundaries between IDEFO, IDEFIx and XSpec. The shaded parts of the
figure are items being developed to support a common model development process.

36

Document Number: M-CR-92-57&
Conawc Number: F33615-91-C-5725
Projec Number FYI 133-91-0506 and AMD 001

IDEFO Editor IDEFIx Editor

IDEFO Model IDEFUx Model Screatr

POIDEFIx Database
~taisaWTranslator Schemas

SiuainFiles

Synce ie

F~gur 16: The Combined Toolkit

37

Documem Number M-CR-92-57a
Cotrat Number: F33615-91-C-5723
Project Number: FYI 133-91M0 aWd AMD 001

6.6 The Combined Meta-Model

This section combines the individual meta-models of the IDEFO, IDEF I x, and XSpec languages,
into a single comprehensive meta-model that can be used to represent complicated systems.
Much of the theory of how the models can be combined was given in the previous section. This
section details how these theoretical aspects are implemented in the meta-model.

6.6.1 Base Mechanisms and Externals

The relation between XSpec-Connectable-Object and Base-Activity is used to identify which
XSpec-Objects are base mechanisms (see Figure 17). This relation identifies the Base-Activities
in the IDEF0 model that are associated with each base mechanism.

An XSpec-External which produces or consumes messages that correspond to a concept that is
generated or consumed by an IDEFO-External is related to that external. Since XSpec is a more
detailed model, not all XSpec externals need to be IDEFO externals. Recall that in IDEFO, an
external is a source (or sink) of a single concept. In XSpec an external may initiate several
transactions, so the Consists-Of relation must have a I to many cardinality.

38

I,

Document Number. Mfl-c-92-57&
C=Utrct Number. F33613-91-C-SM2
Project Number~ FYI 133-91.0506 and AMD 001

xs-wbe
X-NMi

X.Typs

X.Type

XX-rD Mm

1 X-I

X4%da
X-3130K

-Cowe X-cZ Jy

XI-Ia

-14-C 7 ae ebnssan xani

X-W MX-W=rX-W R6 XID39

DocuwnM Numbzr: MCR-92-57*
Coutnct Number F33615-91-C.5725
Projec Numbe: FYI 133-91-05089 &ad AMD 001

6.6.2 External concepts

An IDEFO-Path is classified as either a Local-Path or a Foreign-Path. A Foreign-Path is any
path that connects two base activities which are associated with different base mechanisms. The
Foreign-Path entity is the major component that keeps the XSpec and IDEFO models consistent.
The Foreign-Path entity will be explained in more detail later. As soon as afl the Base-Activities
and IDEFO-Externals are completely defined then IDEFO-Paths can be automatically categorized
as either local or foreign.

If a Base-Concept Describes an IDEFO-Path that has been categorized as a Foreign-Path. then this
Base-Concept will be categorized as a Foreign-Concept. All concepts that are not
Foreign-Concepts are Local-Concepts. This categorization is easy to automate.

The categorization of concepts is illustrated in Figure 18.

Fiue18: Re lation of Messages to Conce-pts

4,0

Document Number: rrl.CR-92.57A
Contact Number: F33615-91-C-5725
Project Number• FYI 133-91-05089 and AMD 001

6.6.3 External Messages

Message-Description entities are classified as either Local-Messages or Foreign-Messages.
Foreign-Messages are those that correspond to an IDEFO concept flow, that is a message which
flows between two different base mechanisms. Messages which flow only within the same base
mechanism are Local-Messages. The classification relation in shown in Figure 18.

6.6.4 Transactions

A transaction is a mapping between a concept and a set of XSpec messages. The Consists-Of
relation represents this mapping. Since a message may be a part of many transactions, and a
transaction consists of many messages, the entity, Message-In-Transaction is used to break up
the many-to-many relation. Occasionally, the same IDEFO Concept has to be modeled as several
different protocols in an XSpec model. This is due to the added detail in the XSpec model. The
protocol of messages needed to transfer a part may depend on the base mechanisms doing the
transfer. For example the protocol would be different if the transfer was done by a human than
by a machine. This situation is modeled by the 1 to many Is-Modeled-By relation between the
Foreign-Concept and Transaction entities.

6.6.5 Foreign Path

Every foreign path is related to a set of links which connect two base activities of 1DEF-0
Externals. A single-link (which represents the flow of a composite concept) can be associated
with many paths. The entity, Link-Associated-With-Foreign-Path, is used to break up this many-
to-many relation (see Figure 19). A Foreign-Path also has a unique Transaction associated with
it. This is determined by the Flows-Along relation. Relations also exist between a Foreign-Path
and the Foreign-Wires which constitute the path. This is done for convenience, so that if any
of these paths or wires are edited, the modeling tool knows that the models are no longer
consistent and the appropriate actions can be taken.

Notice that wires are classified into two categories. Those related to Foreign-Paths, and those
that are not related. All wires that connect base mechanisms together, must be related to a
Foreign-Path. These are classified as Foreign-Wires. The wires that exist internal to a base
mechanism decomposition are not related to the IDEFO model and are classified as Local-Wires.
The Foreign-Path entity and all of its relations are shown in Figure 19.

Notice that Foreign-Paths are not related to XSpec-Paths. Only the portion of each XSpec-Path
that flows between base mechanisms must be consistent with a Foreign-Path in the IDEFO model.
Changes to the XSpec-Path internal to a base mechanism do not impact consistency. Since
XSpec-Paths are identified only by their terminal points, a relation to XSpec-Paths and
IDEFO-Paths is not desired.

The entire combined IDEF0 and XSpec meta-model is shown in Figure 20.

41

Docuament Number, M-cR-92-57&
Coatmc Number P33615-91-C-3725
Projec Number: FYI 133-91I-O50g9 and AMD 001

x -1hiDI

CXh-I MF

X-IDD (FK)

I-EDp

IC-Nm.

I-Typ ype

X4D (M-MD (FK)

r--m (FK) C-do I (FK)-D M CI

I-i C-ID (FE) C-

F-Foure 19 RlainofPahladWie

14001-Ty I.HM C4

F in

SI AtI

sill i I

ji I- i I

ifL

",1
L14dh2 1~~

., • s ill, }
T- fill

f m I Ana

-11l- I

-4 3 ' - -'

43I]I

Documnt Number. MTI-CR-92.-57
Comwct Number F33615-91-C-5725
Project Numbw: FYI133-91-05019 and AMD 001

6.7 Generating a Prototype XSpec Model

This section describes how a prototype XSpec model can be generated from an IDEFO model.
Ideally, as the IDEFO model is being developed, the XSpec data elements would be automatically
generated and stored in the combined model database. Then at any point in the IDEFO model
development an XSpec model would exist. However, since we are integrating commercial tools,
they are not designed to interact with our combined model, and so another approach will be
taken. After the IDEFO model is completed, the designer will execute a translation program.
This program will translate the output of the IDEFO modeling tool into the combined model. It
then generates a prototype XSpec model and fills in the XSpec entities. This section describes
an algorithm to generate the prototype XSpec model.

6.7.1 Defaults

XSpec models are more detailed than IDEFO models. Two approaches can be taken to add the
detail when generating the prototype model. First, the user could be asked to fill in the added
information interactively, or second, reasonable defaults could be assigned, and the modeler fills
in the detail while using the XSpec tool. The latter approach was adopted for this project since
it was felt that adding detail is really part of the design process and should be done in a tool
developed for that purpose. Listed below are all the default rules in the generator that will be
written for this project.

1. The mechanism hierarchy will be used to generate the component hierarchy.

2. All base mechanisms will initially be modeled as components with no internal
structure. This will allow further decomposition.

3. An XSpec external is created for every IDEFO external and placed in the XSpec
context diagram.

4. All foreign concepts will have one transaction. This transaction will have one
message. The message name and description will be the same as the name and
description of the associated foreign concept. Therefore, in the prototype model
there is a one-to-one mapping between an XSpec message and an IDEFO foreign
path.

5. Messages will have no parameters associated with them.

6. Pins on base mechanisms and components will be assigned the name of the
message that flows through it. If there is a duplication of a pin name in a
connector, a unique suffix is added.

7. The messages will have a default M-Kind of event. The direction of the pins will
be consistent with the associated foreign path.

44

Document Number. ITCR-92-S7a
Conmt Number F33615-91.C-5725
Project Number: FY1133-91-05089 and AMD 001

8. Pins will be grouped into connectors based on common destinations. The names
of the connectors will be the name of destination. Destinations are defined as the
next XSpec object along the message path that is at the same or higher level in
the component hierarchy. There will be no subconnectors.

9. Bundles will connect all the connectors in an XSpec diagram. These bundles will

contain only wires. There will be no sub-bundles.

6.7.2 Generation Algorithm

Figure 21 describes an algorithm that that will generate a prototype XSpec model from an IDEFO
model. The heart of the algorithm is the recursive routine CreateXSpecDiagram. This algorithm
is described in Figure 22. The prototype generator expects as inputs a complete IDEFO model,
the base mechanism hierarchy, and all base activities assigned one base mechanism.

Create XSpec prototype model

1) Copy the base mechanism hierarchy into the
XSpec component hierarchy.

2) Create an XSpec-External for each IDEO-External. Place this
external at the XSpec-Model level in the
component hierarchy.

3) For each IDEFO-Path
a) Classify it as a local or foreign path
b) If it is foreign create the -necessary Link-Associated-With-

Foreign-Path and Link

4) For each Base-Concept
a) Classify it as local or foreign
b) If it is foreign create a transaction for each path related to the

concept.

5) For each Transaction
a) Link the Transaction to the appropriate Foreign-Path.
b) Create a Message-Description for the Transaction.

6) Execute CreateXSpecDiagram (XSpec-Model)

7) Link all the Foreign-Wires to the appropriate Foreign-Path.

Figure 21: Ptote Model Generator

45

Documew Number M.CR-92-57.
Cbeu= Nwub. F33615-91.C-5725
Projed Number: FYI 133.91.0M089 md AMD0I

CreateXSpecDiagram(Object)

1) If Object is a base mechanism
a) For every foreign path on every base activity

on the Object
i) Create a pin
ii) Link pin to appropriate Message-Description

b) Group pins into connectors by commuon destination.

2) Otherwise (We need to create an XSpec diagram for the Object)
a) For every XSpec-Object in Object

i) CreateXSpecDiagram(XSpec-Object)
b) For every pin on every XSpec-Object in Object whose

destination is outside of Object
i) Create a pin on Object

c) Group pins into connectors by common destination.
d) Create the bundles that connect all the connectors in the diagram.
e) Create the wires in the bundles.

3) Return

Fig 22: Recursive XSpec Diagram Generator

46

U.S. GovERNMENT PRINTING OFFICE 750-113

